Advertisements
Advertisements
प्रश्न
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
विकल्प
`1/2 log [(2x - 1) + sqrt(x^2 - x - 6)] + "c"`
tan−1 (2x − 1) + c
`log [(x - 1/2) + sqrt(x^2 - x - 6)] + "c"`
`log [(x - 1/2) + sqrt(x^2 + x + 6)] + "c"`
उत्तर
`int 1/sqrt((x - 3)(x + 2))` dx = `bbunderline(log [(x - 1/2) + sqrt(x^2 - x - 6)] + "c")`.
Explanation:
`int 1/sqrt((x - 3)(x + 2))` dx = `int 1/sqrt(x^2 - x - 6)` dx
= `int 1/sqrt((x - 1/2)^2 - (5/2)^2)` dx
= `log |(x - 1/2) + sqrt((x - 1/2)^2 - ( 5/2)^2)| + c`
= `log |(x - 1/2) + sqrt(x^2 - x - 6)| + c`
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`1/(1 + cot x)`
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
`int logx/(log ex)^2*dx` = ______.
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
`int sqrt(1 + "x"^2) "dx"` =
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate `int 1/((2"x" + 3))` dx
`int sqrt(1 + sin2x) "d"x`
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int x/(x + 2) "d"x`
`int (7x + 9)^13 "d"x` ______ + c
Evaluate `int(3x^2 - 5)^2 "d"x`
`int ("d"x)/(x(x^4 + 1))` = ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int1/(x^2+4x-5) dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate `int(1+x+x^2/(2!))dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).