हिंदी

Choose the correct options from the given alternatives : ∫e2x+e-2xex⋅dx = - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =

विकल्प

  • `e^x - (1)/(3e^(3x)) + c`

  • `e^x + (1)/(3e^(3x)) + c`

  • `e^-x + (1)/(3e^(3x)) + c`

  • `e^-x - (1)/(3e^(3x)) + c`

MCQ

उत्तर

`e^x - (1)/(3e^(3x)) + c`

[ Hint : `int (e^(2x) + e^-2x)/e^x*dx`

= `int e^x*dx + int e^(-3x)*dx`

= `e^x + (e^(-3x))/((- 3)) + c`

= `e^x - (1)/(3e^(3x)) + c`].

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Miscellaneous Exercise 3 [पृष्ठ १५०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 1.2 | पृष्ठ १५०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Integrate the functions:

`1/(1 + cot x)`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Evaluate: `int 1/(x(x-1)) dx`


Solve: dy/dx = cos(x + y)


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Evaluate the following : `int (logx)2.dx`


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


`int sqrt(1 + "x"^2) "dx"` =


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Evaluate `int (5"x" + 1)^(4/9)` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int (sin4x)/(cos 2x) "d"x`


`int(log(logx))/x  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int x^3"e"^(x^2) "d"x`


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


`int cos^3x  dx` = ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate `int 1/("x"("x" - 1)) "dx"`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate `int (1+x+x^2/(2!)) dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate `int 1/(x(x-1))dx`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×