हिंदी

∫ ex(x-1)x2 dx = ______ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 

विकल्प

  • `x"e"^(-x) + c`

  • `("e"^x)/(x^2) + c`

  • `(x - 1/x)"e"^x + c`

  • `("e"^x)/x + c`

MCQ
रिक्त स्थान भरें

उत्तर

`("e"^x)/x + c`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.3: Indefinite Integration - MCQ

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Evaluate :`intxlogxdx`


Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Integrate the functions:

sin (ax + b) cos (ax + b)


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`(sin x)/(1+ cos x)^2`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


`int (dx)/(sin^2 x cos^2 x)` equals:


\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

\[\int\sqrt{9 - x^2}\text{ dx}\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of\[\int \log_e x\ dx\].

 


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Evaluate the following integrals : `int sin 4x cos 3x dx`


Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Integrate the following functions w.r.t. x : sin5x.cos8x


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


Evaluate: `int "x" * "e"^"2x"` dx


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int 1/(cos x - sin x)` dx = _______________


`int cos sqrtx` dx = _____________


`int (log x)/(log ex)^2` dx = _________


`int (sin4x)/(cos 2x) "d"x`


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int 1/(xsin^2(logx))  "d"x`


`int x/(x + 2)  "d"x`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int dx/(1 + e^-x)` = ______


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


`int sec^6 x tan x   "d"x` = ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Evaluate `int 1/("x"("x" - 1)) "dx"`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


`int x^3 e^(x^2) dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


`int "cosec"^4x  dx` = ______.


Evaluate:

`int sin^2(x/2)dx`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate `int1/(x(x - 1))dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×