Advertisements
Advertisements
प्रश्न
Integrate the functions:
`sqrt(ax + b)`
उत्तर
Let `I = int sqrt(ax + b) dx`
Put ax + b = t
a dx = dt
`=> dx = 1/a dt`
Hence, `I = int 1/a sqrtt dt`
`= 1/a int t^(1/2) dt`
`= 1/a . 2/3 t^(3/2) + C`
`= 2/(3a) (ax + b)^(3/2) + C`
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
`int "dx"/(9"x"^2 + 1)= ______. `
Integrate the following w.r.t. x : x3 + x2 – x + 1
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
Evaluate: `int log ("x"^2 + "x")` dx
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int 1/(xsin^2(logx)) "d"x`
`int (cos2x)/(sin^2x) "d"x`
`int(log(logx))/x "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
Evaluate `int(1 + x + x^2/(2!) )dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int (1 + x + x^2/(2!)) dx`