Advertisements
Advertisements
प्रश्न
Integrate the functions:
`xsqrt(x + 2)`
उत्तर
Let `I = int x sqrt(x + 2)` dx
Taking `sqrt(x + 2) = t`
or x + 2 = t2
or dx = 2t dt
Hence, `I = int (t^2 - 2). t. 2t dt`
`= int 2t^4 - 4t^2 dt`
`= 2 int (t^4 - 2t^2)` dt
`= 2 int t^4 dt - 4 int` t2 dt
`= 2/5 t^5 - 4/3 t^3 + C`
`=> 2/5 (x + 2)^(5/2) - 4/3 (x + 2)^(3/2) + C`
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
cot x log sin x
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Write a value of
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Evaluate the following integrals : tan2x dx
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int sqrt(1 + sin2x) "d"x`
`int 1/(xsin^2(logx)) "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
Write `int cotx dx`.
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate:
`int sin^2(x/2)dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate `int 1/(x(x-1))dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate `int1/(x(x - 1))dx`