Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : tan2x dx
उत्तर
`int tan^2x dx = int(sec^2x - 1)dx`
= `int sec^2x dx - int 1. dx`
= tan x – x + c.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of
Write a value of
Write a value of
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Evaluate the following integrals : `int sin 4x cos 3x dx`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
`int sqrt(1 + "x"^2) "dx"` =
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int logx/x "d"x`
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int 1/(xsin^2(logx)) "d"x`
`int (cos2x)/(sin^2x) "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
`int cos^3x dx` = ______.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).