Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
उत्तर
Let I = `int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Let `(3"e")^"2t" + 5 = "A"(4"e"^"2t" - 5) + "B" "d"/"dt" (4"e"^"2t" - 5)`
`= 4 "Ae"^"2t" - 5"A" + "B"(8"e"^"2t")`
∴ `(3"e")^"2t" + 5 = (4"A" + 8"B") "e"^"2t" - 5"A"`
Comparing the coefficients of e2t and constant term on both sides, we get
4A + 8B = 3 and - 5A = 5
Solving these equations, we get
A = - 1 and B = `7/8`
∴ I = `int (- 1(4"e"^"2t" - 5) + 7/8 (8"e"^"2t"))/(4"e"^"2t" - 5)` dt
`= - int "dt" + 7/8 int (8"e"^"2t")/(4"e"^"2t" - 5)` dt
∴ I = `- "t" + 7/8 log |4"e"^"2t" - 5|` + c .....`[int ("f" '("x"))/("f" ("x")) "dx" = log |f ("x")| + "c"]`
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
`1/(1 - tan x)`
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int x^3"e"^(x^2) "d"x`
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int(log(logx) + 1/(logx)^2)dx` = ______.
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`