Advertisements
Advertisements
प्रश्न
Find `intsqrtx/sqrt(a^3-x^3)dx`
उत्तर
`I=intsqrtx/sqrt(a^3-x^3)dx`
Let: `x^(3/2)=t`
`=>3/2x^(1/2)dx=dt`
`x^(1/2)dx=2/3dt`
Putting the values in I, we get
`I=intsqrtx/sqrt(a^3-x^3)dx`
`=2/3int1/(sqrt(a^3-t^2))dt`
Using the following formula of integration, we get
`intdx/sqrt(a^2-x^2)=sin^(-1)(x/a)`
`:.2/3int1/sqrt(a^3-t^2)dt=2/3sin^(-1)(t/(a^(3/2)))+C`
Again, putting the value of t, we get
`2/3int1/sqrt(a^3-t^2)dt=2/3sin^(-1)(t/a^(3/2))+C`
`=2/3sin^(-1)(x^(3/2)/a^(3/2))+C`
Here, C is constant of integration.
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`1/(x-sqrtx)`
Write a value of
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
`int sqrt(x^2 + 2x + 5)` dx = ______________
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
Evaluate `int (1)/(x(x - 1))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate `int1/(x(x-1))dx`
Evaluate `int 1/(x(x-1))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`