Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
उत्तर
Let I = `ff(2x + 1)sqrt(x + 2).dx`
Put x + 2 = t
∴ dx = dt
Also, x = t – 2
∴ 2x + 1 = 2(t – 2) + 1 = 2t – 3
∴ I = `int (2t - 3)sqrt(t) dt`
= `int (2t^(3/2) - 3t^(1/2))dt`
= `2int t^(3/2)dt - 3 intt^(1/2)dt`
= `2.(t^5/2)/((5/2)) - 3 . (t^(3/2))/((3/2)) + c`
= `(4)/(5)(x + 2)^(5/2) - 2(x + 2)^(3/2) + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate :`intxlogxdx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`1/(1 + cot x)`
`int (dx)/(sin^2 x cos^2 x)` equals:
Write a value of
Write a value of
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: `int log ("x"^2 + "x")` dx
Evaluate: `int "e"^sqrt"x"` dx
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int sqrt(1 + sin2x) "d"x`
`int x/(x + 2) "d"x`
Evaluate `int(3x^2 - 5)^2 "d"x`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int ("d"x)/(x(x^4 + 1))` = ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`