Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
उत्तर
Let I = `int 1/(sqrt(3"x"^2 - 5))` dx
`= 1/sqrt3 int 1/sqrt("x"^2 - 5/3)` dx
`= 1/sqrt3 int 1/(sqrt ("x"^2 - (sqrt5/sqrt3)^2))` dx
`= 1/sqrt3 log |"x" + sqrt("x"^2 - (sqrt5/sqrt3)^2)| + "c"_1`
`= 1/sqrt3 log |"x" + sqrt("x"^2 - 5/3)| + "c"_1`
`= 1/sqrt3 log |(sqrt3"x" + sqrt(3"x"^2 - 5))/sqrt3| + "c"_1`
`= 1/sqrt3 log |sqrt3"x" + sqrt(3"x"^2 - 5)| - 1/sqrt3 log sqrt3 + "c"_1`
∴ I = `1/sqrt3 log |sqrt3"x" + sqrt(3"x"^2 - 5)| + "c"`,
where c = `"c"_1 - 1/sqrt3 log sqrt3`
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
cot x log sin x
Integrate the functions:
`(1+ log x)^2/x`
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Integrate the following functions w.r.t. x : sin5x.cos8x
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int cot^2x "d"x`
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate `int1/(x(x - 1))dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`