Advertisements
Advertisements
प्रश्न
Integrate the functions:
cot x log sin x
उत्तर
Let `I = int cot x log sin x dx`
Put log sin x = t
`1/sinx` . cos x dx = dt
`I = int t dt`
or cot x dx = dt
∴ `I = int t dt = t^2/2 + C`
`= 1/2 [log (sin x)]^2 + C`
APPEARS IN
संबंधित प्रश्न
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`(1+ log x)^2/x`
Evaluate: `int 1/(x(x-1)) dx`
Write a value of
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int secx/(secx - tanx)dx` equals ______.
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`