Advertisements
Advertisements
प्रश्न
Integrate the functions:
`sqrt(sin 2x) cos 2x`
उत्तर
Let `I = int sqrtsin 2x cos 2x dx`
Put sin 2x = t
⇒ 2 cos 2x dx = dt
∴ `I = 1/2 int t^(1/2) dt = 1/2 * t^(1/2 + 1)/(1/2 + 1) + C`
`1/2 xx 2/3 t^(3/2) + C = 1/2 t^(3/2) + C`
`1/3 (sin 2x)^(3/2) + C`
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`1/(1 - tan x)`
Integrate the functions:
`(1+ log x)^2/x`
Solve: dy/dx = cos(x + y)
Write a value of\[\int \log_e x\ dx\].
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Integrate the following w.r.t. x : x3 + x2 – x + 1
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : sin5x.cos8x
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int (7x + 9)^13 "d"x` ______ + c
`int sin^-1 x`dx = ?
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int(5x + 2)/(3x - 4) dx` = ______
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate `int1/(x(x - 1))dx`