Advertisements
Advertisements
प्रश्न
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
विकल्प
True
False
उत्तर
False
Explanation:
Let I = `int "x" * "e"^"2x"` dx
`= "x" int "e"^"2x" * "dx" - int ["d"/"dx" ("x") int "e"^"2x" * "dx"]` dx
`= "x" * "e"^"2x"/2 - int 1 * "e"^"2x"/2 * "dx"`
`= "x"/2 "e"^"2x" - 1/2 int "e"^"2x" +` c
`= "x"/2 "e"^"2x" - 1/2 * "e"^"2x"/2` + c
`= "e"^"2x" ("x"/2 - 1/4)` + c
`= "e"^"2x" (("2x" - 1)/4)` + c
∴ f(x) = `(2"x" - 1)/4`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals : `int cos^2x.dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
`int sqrt(1 + sin2x) "d"x`
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int(1+x+x^2/(2!))dx`