Advertisements
Advertisements
प्रश्न
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
उत्तर
\[\int\left( \frac{1 - \sin x}{\cos^2 x} \right) dx\]
\[ = \int\left( \frac{1}{\cos^2 x} - \frac{\sin x}{\cos^2 x} \right)dx\]
\[ \int\left( \frac{1}{\cos^2 x} - \frac{\sin x}{\cos x} \times \frac{1}{\cos x} \right) dx\]
\[ = \int\left( \sec^2 x - \sec x \tan x \right) dx\]
\[ = \tan x - \sec x + C\]
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Integrate the functions:
`1/(1 + cot x)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
`int sqrt(1 + "x"^2) "dx"` =
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Evaluate `int 1/((2"x" + 3))` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int (7x + 9)^13 "d"x` ______ + c
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
`int x^3"e"^(x^2) "d"x`
`int dx/(1 + e^-x)` = ______
`int(5x + 2)/(3x - 4) dx` = ______
The value of `intsinx/(sinx - cosx)dx` equals ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate the following
`int1/(x^2 +4x-5)dx`
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate `int 1/(x(x-1))dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`