Advertisements
Advertisements
प्रश्न
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
उत्तर
Let I = `int 1/sqrt("x"^2 + "a"^2) "dx"`
Put x = a tan θ ⇒ tan θ = `"x"/"a"`
∴ dx = a sec2 θ dθ
∴ I = `int 1/ sqrt("a"^2 "tan"^2 theta +"a"^2) "a" "sec"^2 theta "d" theta`
= `int ("a"."sec"^2 theta)/("a" sqrt(1+"tan"^2 theta)) "d"theta`
= `int ("sec"^2 theta)/("sec" theta) "d"theta `
`= int "sec" theta . "d" theta`
`= "log" |"sec" theta +"tan" theta| +"c"_1`
`= "log" |"x"/"a" + sqrt("sec"^2 theta)| + "c"_1`
`= "log" | "x"/"a" + sqrt 1+ "tan"^2 theta | + "c"_1`
=`"log" |"x" /"a" +sqrt(1+"x"^2/"a"^2)| +"c"_1`
=` "log" |"x"/"a" + sqrt( "a"^2 + "x"^2)/"a"| + "c"_1`
`= "log" |"x" +sqrt("x"^2 +"a"^2)| - "log" "a" + "c"_1`
`therefore int 1/sqrt("x"^2 + "a"^2) "dx" = "log" |"x" +sqrt("x"^2 +"a"^2)| - "log" "a" + "c" ,`
where c = - log a +c1
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
sec2(7 – 4x)
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of
Write a value of
Write a value of
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
`int "dx"/(9"x"^2 + 1)= ______. `
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : tan5x
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate `int (3"x"^2 - 5)^2` dx
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate: ∫ |x| dx if x < 0
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int (cos2x)/(sin^2x) "d"x`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int sin^-1 x`dx = ?
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int ("d"x)/(x(x^4 + 1))` = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
`int (logx)^2/x dx` = ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate `int1/(x(x - 1))dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`