Advertisements
Advertisements
प्रश्न
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
उत्तर
Let `I = int (e^(tan -1 x)/(1 + x^2))` dx
Put tan-1 x = t
`1/(1 + x^2)` dx = dt
Hence, `I = int e^t` dt
= et + C
= `e^(tan^-1) + C`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`(1+ log x)^2/x`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Write a value of
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int 1/(cos x - sin x)` dx = _______________
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int(5x + 2)/(3x - 4) dx` = ______
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`