Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
उत्तर
Let I = `int 1/("x"^2 + 4"x" - 5)` dx
`= int 1/("x"^2 + 4"x" + 4 - 4 - 5)` dx
`= int 1/(("x + 2")^2 - 9) "dx"`
`= int 1/(("x" + 2)^2 - 3^2)` dx
`= 1/(2 xx 3) log |(("x" + 2) - 3)/(("x" + 2) + 3)|` + c
∴ I = `1/6 log |("x" - 1)/("x" + 5)|` + c
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int (cos x)/(1 - sin x) "dx" =` ______.
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).