Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
उत्तर
Let I = `int (4e^x - 25)/(2e^x - 5).dx`
Put,
Numerator = `"A (Denominator) + B"[d/dx ("Denominator")]`
∴ 4ex – 25 = `"A"(2e^x - 5) + "B"[d/dx(2e^x - 5)]`
= A(2ex – 5) + B(2ex – 0)
∴ 4ex – 25 = (2A + 2B)ex – 5A
Equating the coefficient of ex and constant on both sides, we get
2A + 2B = 4 ...(1)
and
5A = 25
∴ A = 5
∴ from (1),2(5) + 2B = 4
∴ 2B = – 6
∴ B = – 3
∴ 4ex – 25 = 5(2ex – 5) – 3 (2ex)
∴ I = `int[(5(2e^xx - 5) - 3(2e^x))/(2e^x - 5)].dx`
= `int[5 - (3(2e^x))/(2e^x - 5)].dx`
= `5 int 1dx - 3 int (2e^x)/(2e^x - 5].dx`
= 5x – 3 log|2ex – 5| + c ...`[∵ int (f'(x))/f(x)dx = log|f(x)| + c]`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Integrate the functions:
`1/(1 + cot x)`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : tan2x dx
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t.x:
cos8xcotx
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int "x" * "e"^"2x"` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int cot^2x "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
Evaluate `int(3x^2 - 5)^2 "d"x`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
Write `int cotx dx`.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
`int x^3 e^(x^2) dx`
Evaluate `int (1+x+x^2/(2!)) dx`
`int "cosec"^4x dx` = ______.
Evaluate `int 1/(x(x-1))dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).