हिंदी

Evaluate : ∫π0 x/(a^2cos^2 x+b^2 sin^2 x)dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`

योग

उत्तर

`I=int_0^pix/(a^2cos^2x+b^2sin^2x)  dx.............(i)`


`I=int_0^pi(pi-x)/(a^2cos^2(pi-x)+b^2sin^2(pi-x))dx`


`I=int_0^pi(pi-x)/(a^2cos^2x+b^2sin^2x)dx...........(ii)`


`int_0^a f(x) dx = int_0^a f (a - x) dx`


Adding (i) and (ii), we get


`2"I" = int_0^pi (x + pi - x)/(a^2 cos^2 x + b^2 sin^2 x)  dx`


`2"I" = int _0^pi  pi/(a^2 cos^2 x + b^2 sin^2 x)  dx`


`2"I" = int_0^pi (pi sec^2 x )/(a^2 + b^2 tan^2 x)`     ........ `1/b^2 int_0^pi  (pi sec^2 x dx)/((a/b)^2 + tan^2 x)` 

`2"I" = pi/b^2 int  dt/(a/b)^2 + t^2`   .......... `[tan x = t  -> sec^2 x dx  = dt]`


`2"I" = pi/b^2 [(b/a) tan^-1 (bt/a)]_0^pi`


`2"I" = pi/(ab) [tan^-1 (b/a tan x)]_0^pi`


`2"I" = pi/(ab) (0 - 0) = 0`


2 I = 0


I = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Find : `int(x+3)sqrt(3-4x-x^2dx)`


Find `intsqrtx/sqrt(a^3-x^3)dx`


Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

`cos x /(sqrt(1+sinx))`


Integrate the functions:

`1/(1 - tan x)`


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate `int (3"x"^2 - 5)^2` dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


Fill in the Blank.

`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c


Evaluate: `int 1/(sqrt("x") + "x")` dx


`int (sin4x)/(cos 2x) "d"x`


`int logx/x  "d"x`


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int sin^-1 x`dx = ?


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate `int (1+x+x^2/(2!)) dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int1/(x(x-1))dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate `int 1/(x(x-1)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×