Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
उत्तर
let I = `int 3^(cos^2x) sin2x dx`
Put cos2x = t
∴ `[2 cos x d/dx (cos x)]dx` = dt
∴ – 2 sin x cos x dx = dt
∴ sin 2x dx = – dt
I = `- int3^t dt`
= `-(1)/(log3).3^t + c`
= `-(1)/(log3).3^(cos^2x) + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`1/(1 - tan x)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Write a value of
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate: `int "e"^sqrt"x"` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int x^2/sqrt(1 - x^6)` dx = ________________
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int x^x (1 + logx) "d"x`
`int x/(x + 2) "d"x`
`int(log(logx))/x "d"x`
`int (7x + 9)^13 "d"x` ______ + c
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
`int x^3"e"^(x^2) "d"x`
`int sin^-1 x`dx = ?
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int dx/(1 + e^-x)` = ______
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int sec^6 x tan x "d"x` = ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int(log(logx) + 1/(logx)^2)dx` = ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int cos^3x dx` = ______.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).