Advertisements
Advertisements
प्रश्न
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
उत्तर
Let I=\[\int\]tan x . sec3x dx
Let sec x = t
⇒ sec x tan x dx = dt
\[ = \frac{\sec^3 x}{3} + C \left( \because x = \sec x \right)\]
APPEARS IN
संबंधित प्रश्न
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`cos sqrt(x)/sqrtx`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
`int 1/(cos x - sin x)` dx = _______________
`int sqrt(1 + sin2x) "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int cos^7 x "d"x`
`int (7x + 9)^13 "d"x` ______ + c
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int "cosec"^4x dx` = ______.
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`