Advertisements
Advertisements
प्रश्न
`int cos^7 x "d"x`
उत्तर
Let I = `int cos^7 x "d"x`
= `int(cos^2x)^3*cosx "d"x`
= `int (1 - sin^2x)^3* cosx "d"x`
Put sin x = t
∴ cos x dx = dt
∴ I = `int (1 - "t"^2)^3 "dt"`
= `int (1 - 3"t"^2 + 3"t"^4 - "t"^6) "dt"`
= `int 1* "dt" - 3 int "t"^2 "dt" + 3 int "t"^4 "dt" - int "t"^6 "dt"`
= `"t" - 3 ("t"^3/3) + 3"t"^5/5) - "t"^7/7 + "c"`
∴ I = `sinx - sin^3x + 3/5 sin^5x - 1/7 sin^7x + "c"`
संबंधित प्रश्न
Evaluate :`intxlogxdx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Write a value of
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Evaluate the following integrals : `int cos^2x.dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int x^2/sqrt(1 - x^6)` dx = ________________
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int 1/(xsin^2(logx)) "d"x`
`int (cos2x)/(sin^2x) "d"x`
`int x/(x + 2) "d"x`
`int (7x + 9)^13 "d"x` ______ + c
`int1/(4 + 3cos^2x)dx` = ______
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
`int 1/(sinx.cos^2x)dx` = ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
`int secx/(secx - tanx)dx` equals ______.
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate `int1/(x(x - 1))dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
`int x^3 e^(x^2) dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following.
`intx sqrt(1 +x^2) dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int 1/(x(x-1)) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).