Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int \frac{\cos x}{\sin x \cdot \log \sin x}dx\]
\[ \Rightarrow \int \frac{\cot x}{\log \sin x}dx\]
\[\text{ Let log sin x} = t\]
\[ \Rightarrow \text{ cot x dx} = dt\]
\[ \therefore I = \int \frac{dt}{t}\]
\[ = \text{ log t + C}\]
\[ = \text{ log}\left( \text{ log sin x} \right) + C\]
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`1/(1 - tan x)`
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int \log_e x\ dx\].
Write a value of
Write a value of
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals : tan2x dx
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int sin^-1 x`dx = ?
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int sec^6 x tan x "d"x` = ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`