Advertisements
Advertisements
प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
उत्तर
`"Let "I = int_a^bf(x)dx`
Put x= a + b - t
∴ dx = -dt
When x = a, t = b and when x = b, t = a
`therefore I = int_b^af(a+b-t)(-dt)`
`therefore I = -int_b^af(a+b-t)dt`
`therefore I = int_a^bf(a+b-t)dt ... [because int_a^bf(x)dx=-int_b^af(x)dx]`
`therefore int_a^bf(x)dx = int_a^bf(a+b-x)dx ... [because int_a^bf(x)dx= int_a^bf(t)dt]`
`"Let "I = int_a^b(f(x))/(f(x)+f(a+b-x))dx ... (i)`
`therefore I = int_a^b(f(a+b-x))/(f(a+b-x)+f(a+b-(a+b-x)))dx`
`therefore I = int_a^b(f(a+b-x))/(f(a+b-x)+f(x))dx ... (ii)`
Adding (i) and (ii) we get
`2I = int_a^b(f(x)+f(a+b-x))/(f(x)+f(a+b-x))dx`
`therefore 2I = int_a^b1dx`
`therefore 2I = [x]_a^b`
`therefore I = (b-a)/2`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
cot x log sin x
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Integrate the functions:
`(1+ log x)^2/x`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of
Write a value of
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
`int sqrt(1 + "x"^2) "dx"` =
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
`int 1/(cos x - sin x)` dx = _______________
`int sqrt(1 + sin2x) "d"x`
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int 1/(xsin^2(logx)) "d"x`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int sin^-1 x`dx = ?
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int (cos x)/(1 - sin x) "dx" =` ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate `int1/(x(x - 1))dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int 1/(x(x-1)) dx`