Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
उत्तर
Let I = `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Put sin x = t
∴ cosx dx = dt
∴ I = `int 3/(4t^2 + 4t - 1)dt`
I = `3/4 int 1/(t^2 + t - 1/4)dt`
I = `3/4 int 1/((t^2 + t + 1/4) - 1/4 - 1/4)dt`
I = `3/4 int 1/ ((t + 1/2)^2 - 1/2)dt`
I = `3/4 int 1/sqrt((t + 1/2)^2 - (1/sqrt2)^2)dt`
`[∵ int 1/(x^2 - a^2)dx = 1/(2a) log |(x - a)/(x + a)| + c]`
I = `3/4 xx 1/(2(1/sqrt2)) log |(t + 1/2 - 1/sqrt2)/(t + 1/2 + 1/sqrt2)| + c`
I = `3/(4sqrt2) log |(2sqrt2t + (2sqrt2)/2 - (2sqrt2)/sqrt2)/(2sqrt2t + (2sqrt2)/2 - (2sqrt2)/sqrt2)| + c`
I = `3/(4sqrt2) log |(2sqrt2t + sqrt2 - 2)/(2sqrt2t +sqrt2 + 2)| + c`
I = `3/(4sqrt2) log |(2sqrt2sin + sqrt2 - 2)/(2sqrt2sin +sqrt2 + 2)| + c`
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`sin x/(1+ cos x)`
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int log ("x"^2 + "x")` dx
`int x^2/sqrt(1 - x^6)` dx = ________________
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int sqrt(1 + sin2x) "d"x`
`int x/(x + 2) "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
`int(log(logx) + 1/(logx)^2)dx` = ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int 1/(sinx.cos^2x)dx` = ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`