हिंदी

Evaluate the following : ∫13x2+5x+7.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`

योग

उत्तर

I = `int1/sqrt(3x^2 + 5x + 7)dx`

I = `1/sqrt3 int 1/sqrt(x^2 + (5x)/3 + 7/3)dx`

I = `1/sqrt3 int 1/sqrt((x^2 + (5x)/3 + 25/36) + (7/3 - 25/36))dx`

I = `1/sqrt3 int 1/sqrt((x^2 + (5x)/3 + (5/6)^2) + (59/36)).dx`

I = `1/sqrt3 int 1/sqrt((x + 5/6)^2 + (sqrt59/6)^2)dx`

I = `1/sqrt3 log |(x + 5/6) +sqrt((x + 5/2)^2 + (sqrt59/6)^2)| + c`   ....`int1/sqrt(x^2 + a^2)dx = log|x + sqrt(x^2 + a^2)| + c`

I = `1/sqrt3 . log|(x + 5/6) + sqrt(x^2 + (5x)/3 + 7/3)| + c` 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (B) [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (B) | Q 1.14 | पृष्ठ १२३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`cos x /(sqrt(1+sinx))`


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

\[\int\sqrt{x - x^2} dx\]

\[\int\sqrt{9 - x^2}\text{ dx}\]

\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


Integrate the following w.r.t. x : x3 + x2 – x + 1


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: `int "x" * "e"^"2x"` dx


Evaluate: `int "e"^sqrt"x"` dx


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int (cos2x)/(sin^2x)  "d"x`


`int cot^2x  "d"x`


`int x/(x + 2)  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


The value of `intsinx/(sinx - cosx)dx` equals ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int (logx)^2/x dx` = ______.


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


`int x^3 e^(x^2) dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×