Advertisements
Advertisements
प्रश्न
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
उत्तर
I = `int1/sqrt(3x^2 + 5x + 7)dx`
I = `1/sqrt3 int 1/sqrt(x^2 + (5x)/3 + 7/3)dx`
I = `1/sqrt3 int 1/sqrt((x^2 + (5x)/3 + 25/36) + (7/3 - 25/36))dx`
I = `1/sqrt3 int 1/sqrt((x^2 + (5x)/3 + (5/6)^2) + (59/36)).dx`
I = `1/sqrt3 int 1/sqrt((x + 5/6)^2 + (sqrt59/6)^2)dx`
I = `1/sqrt3 log |(x + 5/6) +sqrt((x + 5/2)^2 + (sqrt59/6)^2)| + c` ....`int1/sqrt(x^2 + a^2)dx = log|x + sqrt(x^2 + a^2)| + c`
I = `1/sqrt3 . log|(x + 5/6) + sqrt(x^2 + (5x)/3 + 7/3)| + c`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of
Write a value of
Write a value of
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int "x" * "e"^"2x"` dx
Evaluate: `int "e"^sqrt"x"` dx
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int (cos2x)/(sin^2x) "d"x`
`int cot^2x "d"x`
`int x/(x + 2) "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
The value of `intsinx/(sinx - cosx)dx` equals ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int (logx)^2/x dx` = ______.
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
`int x^3 e^(x^2) dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`