Advertisements
Advertisements
प्रश्न
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
विकल्प
`(3)^("x"^3) + "c"`
`(3)^("x"^3)/(3 * log 3) + "c"`
`log 3 (3)^("x"^3)` + c
`"x"^2 (3)^("x"^3) + "c"`
उत्तर
`(3)^("x"^3)/(3 * log 3) + "c"`
Explanation:
Let I = `int "x"^2 * (3)^("x"^3) "dx"`
Put x3 = t
∴ `3"x"^2 "dx" = "dt"`
∴ `"x"^2 "dx" = 1/3 "dt"`
∴ I = `1/3 int 3^"t" * "dt"`
`= 1/3 * 3^"t"/log 3` + c
`= (3)^("x"^3)/(3 log 3)` + c
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int sin x/cos^2x dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
`int (log x)/(log ex)^2` dx = _________
`int(log(logx) + 1/(logx)^2)dx` = ______.
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
Evaluate:
`int sin^3x cos^3x dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).