Advertisements
Advertisements
प्रश्न
Evaluate the following : `int (1)/(1 + x - x^2).dx`
उत्तर
Let I = `int (1)/(1 + x - x^2).dx`
∴ = `I = int1/(1 - (x^2 - x))dx`
∴ = `I = int1/(1-(x^2 - x + 1/4 - (1)/(4)))dx`
∴ = `I = int1/ ((1+1/4) - (x^2 - x + (1/2)^2))dx`
∴ = `I = int 1/ ((sqrt5/2)^2 - (x - 1/2)^2)dx` ...[`int(1/(a^2 - x^2dx) = 1/(2a) log |(a + x)/(a - x)|+c)`]
∴ `I = (1)/(2(sqrt(5)/2))log|(sqrt(5)/(2) + (x - 1/2))/(sqrt(5)/(2) - (x - 1/2))| + c`
∴ `I = (1)/sqrt(5) log |(sqrt(5) - 1 + 2x)/(sqrt(5) + 1 - 2x)|+ c`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int cos sqrtx` dx = _____________
`int (log x)/(log ex)^2` dx = _________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int (sin4x)/(cos 2x) "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int x/(x + 2) "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate:
`int sin^2(x/2)dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int 1/(x(x-1)) dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`