Advertisements
Advertisements
प्रश्न
Evaluate : `∫1/(cos^4x+sin^4x)dx`
उत्तर
Let I = `int 1/(cos^4x+sin^4x) dx`
Divide numerator and denominator by cos4x, we get:
`int [sec^4x]/[1 + tan^4x]` dx
`int [sec^2 x(sec^2x)]/[ 1 + tan^4x ]` dx
`int [sec^2 x( 1 + tan^2 x)]/( 1 + tan^4x )`dx
Putting tan x = t,
Sec2x dx = dt
I = `int ( 1 + t^2)/(1+ t^4) dt`
Dividing the numerator and denominator by t2, we get:
I = `int [ 1 + t^(1/2) ]/[ t^(1/2) + t^2 ]`
I = `int [ 1 + 1/t^2]/[(t - 1/t)^2 + 2]` dt
Let t - `1/t` = u
`1 + 1/t^2 = (du)/dt`
`( 1 + 1/t^2) dt = du`
I = `1/sqrt2 tan^-1 (u/sqrt2) + C`
I = `1/sqrt2 tan^-1 (( t - 1/t )/sqrt2) + C`
I = `1/sqrt2 tan^-1 ((t^2 - 1)/(sqrt2t)) + C`
I = `1/sqrt2 tan^-1 ( tan^2x - 1)/(sqrt2tan x ) + C`.
APPEARS IN
संबंधित प्रश्न
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`x/(e^(x^2))`
Evaluate: `int 1/(x(x-1)) dx`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : tan5x
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
`int 1/(cos x - sin x)` dx = _______________
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int 1/(xsin^2(logx)) "d"x`
`int sec^6 x tan x "d"x` = ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate `int (1 + x + x^2/(2!)) dx`