हिंदी

Integrate the following functions w.r.t. x : ∫13+2sinx.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`

योग

उत्तर

Let I = `int (1)/(3 + 2sinx).dx`

Put `tan (x/2) = t`

∴ x = 2 tan–1 t

∴ dx = `(2t)/(1 + t^2) and sinx = (2t)/(1 + t^2)`

∴ I = `int (1)/(3 + 2((2t)/(1  +  t^2))).(2dt)/(1 + t^2)`

= `int (1 + t^2)/(3 + 3t^2 + 4t).(2dt)/(1 + t^2)`

= `2 int (1)/(3t^2 + 4t + 3)dt`

= `(2)/(3) int (1)/(t^2 + 4/3t + 1)dt`

= `(2)/(3) int (1)/((t^2 + 4/3t + 4/9) - (4)/(9) + 1)dt`

= `(2)/(3) int (1)/((t + 2/3)^2 + (sqrt(5)/3)^2)dt`

= `(2)/(3) xx (1)/((sqrt(5)/3))tan^-1 [(t + 2/3)/(sqrt(5)/(3))] + c`

= `(2)/sqrt(5)tan^-1 ((3t + 2)/sqrt(5)) + c`

= `(2)/sqrt(5)tan^-1 [(3tan(x/2) + 2)/sqrt(5)] + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (B) [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (B) | Q 2.1 | पृष्ठ १२३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`1/(1 - tan x)`


Evaluate: `int 1/(x(x-1)) dx`


Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int \log_e x\ dx\].

 


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : tan5x


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate `int 1/("x" ("x" - 1))` dx


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


State whether the following statement is True or False.

If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`


Evaluate `int 1/((2"x" + 3))` dx


`int 1/(cos x - sin x)` dx = _______________


`int x^x (1 + logx)  "d"x`


`int (7x + 9)^13  "d"x` ______ + c


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


Evaluate `int(3x^2 - 5)^2  "d"x`


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int sec^6 x tan x   "d"x` = ______.


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int(log(logx) + 1/(logx)^2)dx` = ______.


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int 1/("x"("x" - 1)) "dx"`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate the following.

`int1/(x^2 + 4x-5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×