हिंदी

Evaluate the following integrals : ∫3x+42x2+2x+1.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`

योग

उत्तर

Let I = `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`

Let 3x + 4 = `"A"[d/dx (2x^2 + 2x + 1)\ + "B"`   ...(i)

3x + 4 = A(4x + 2) + B
∴ 3x + 4 = (4A)x + (2A + B)
Consider,
4A = 3 and 2A + B = 4

∴ A = `(3)/(4) and 2(3/4) + "B"` = 4

∴ B = `4- 3/2`

∴ B = `8 - 3/2`

∴ B = `(5)/(2)`

From (i),

(3x + 4) = `3/4 d/dx (2x^2 + 2x + 1) + 5/2`   ...(ii)

The required integral is, 

I = `int ((3/4.d/dx (2x^2 + 2x + 1) + 5/2)/(sqrt(2x^2 + 2x + 1))dx`

I = `3/4 int (d/dx (2x^2 + 2x + 1))/(sqrt(2x^2 + 2x + 1)) dx + 5/2 int 1/ (sqrt(2x^2 + 2x + 1))dx`

I = `3/4 . 2 . sqrt(2x^2 + 2x + 1) + 5/2 . 1/sqrt2 int 1/sqrt(x^2 + x + 1/2)dx + c_1`  ...`int(f'(x))/sqrtf(x)dx = 2 sqrtf(x) + c`

I = `3/2 sqrt(2x^2 + 2x + 1) + 5/(2sqrt2) int 1/sqrt((x^2 + x + 1/4) + 1/2 - 1/4)dx + c_1` 

I = `3/2 sqrt(2x^2 + 2x + 1) + 5/(2sqrt2) int 1/ sqrt((x + 1/2)^2 + (1/2)^2)dx + c_1`

I = `3/2 sqrt(2x^2 + 2x + 1) + 5/(2sqrt2) log |(x + 1/2) + sqrt((x + 1/2)^2 + (1/2)^2)| + c_1 + c_2`

I = `3/2 sqrt(2x^2 + 2x + 1) + 5/(2sqrt2) log |(x + 1/2) + sqrt(x^2 + x + 1/2)| + c`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (C) [पृष्ठ १२८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (C) | Q 1.4 | पृष्ठ १२८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`(1+ log x)^2/x`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int \log_e x\ dx\].

 


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

\[\int x \sin^3 x\ dx\]

Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Integrate the following w.r.t. x : x3 + x2 – x + 1


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int 1/("x" log "x")`dx


`int sqrt(1 + "x"^2) "dx"` =


State whether the following statement is True or False.

If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate: ∫ |x| dx if x < 0


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int cos^7 x  "d"x`


`int(log(logx))/x  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate `int (1+x+x^2/(2!)) dx`


`int "cosec"^4x  dx` = ______.


Evaluate:

`int sin^2(x/2)dx`


`int (cos4x)/(sin2x + cos2x)dx` = ______.


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int1/(x(x-1))dx`


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×