Advertisements
Advertisements
प्रश्न
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
विकल्प
True
False
उत्तर
True
Explanation:
If f(x) = `"e"^("x"^2)`, then
`int "x" * "f"("x") "dx" = int "x" * "e"^("x"^2) *` dx
Put x2 = t
∴ 2x dx = dt
∴ x dx = `1/2` dt
∴ `int "x" * "f"("x") "dx" = 1/2 int "e"^"t" * "dt"`
`= 1/2 "e"^"t" + "c"`
`= 1/2 "e"^("x"^2)` + c
`= 1/2` f(x) + c
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
`int (dx)/(sin^2 x cos^2 x)` equals:
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Evaluate `int (5"x" + 1)^(4/9)` dx
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int secx/(secx - tanx)dx` equals ______.
Evaluate `int (1)/(x(x - 1))dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`