Advertisements
Advertisements
Question
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Options
True
False
Solution
True
Explanation:
If f(x) = `"e"^("x"^2)`, then
`int "x" * "f"("x") "dx" = int "x" * "e"^("x"^2) *` dx
Put x2 = t
∴ 2x dx = dt
∴ x dx = `1/2` dt
∴ `int "x" * "f"("x") "dx" = 1/2 int "e"^"t" * "dt"`
`= 1/2 "e"^"t" + "c"`
`= 1/2 "e"^("x"^2)` + c
`= 1/2` f(x) + c
APPEARS IN
RELATED QUESTIONS
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int(log(logx) + 1/(logx)^2)dx` = ______.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).