Advertisements
Advertisements
Question
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Solution
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + 2
Explanation:
f(x) = ∫f '(x) dx
`= int (1/"x" + "x")` dx
f(x) = log |x| + `"x"^2/2 + "c"` ...(i)
f(1) = `5/2`
f(1) = log 1 + `1^2/2` + c
∴ `5/2 = 0 + 1/2 + "c"` ...(∵ log 1 = 0)
∴ c = `5/2 - 1/2`
∴ = `4/2` = 2
∴ c = 2
∴ f(x) = log |x| + `"x"^2/2` + 2
Notes
The answer in the textbook is incorrect.
RELATED QUESTIONS
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Evaluate: `int 1/(x(x-1)) dx`
Write a value of
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int(5x + 2)/(3x - 4) dx` = ______
`int1/(4 + 3cos^2x)dx` = ______
Write `int cotx dx`.
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate `int 1/(x(x-1)) dx`