Advertisements
Advertisements
Question
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
Solution
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x = int "e"^x[(x + 4 - 1)/(x + 4)^2] "d"x`
= `int "e"^x[1/(x + 4) - 1/(x + 4)^2] "d"x`
= `"e"^x(1/(x + 4)) + "c"` .......`[∵ int"e"^x["f"(x) + "f'"(x)] "d"x = "e"^x*"f"(x) + "c"]`
APPEARS IN
RELATED QUESTIONS
Evaluate :`intxlogxdx`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int 1/(xsin^2(logx)) "d"x`
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int x^3"e"^(x^2) "d"x`
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int ("d"x)/(x(x^4 + 1))` = ______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`