Advertisements
Advertisements
Question
Solution
\[\int \sqrt{1 + x - 2 x^2} \text{ dx}\]
\[ = \int \sqrt{2\left( \frac{1}{2} + \frac{x}{2} - x^2 \right)} \text{ dx}\]
\[ = \sqrt{2} \int\sqrt{\frac{1}{2} - \left( x^2 - \frac{x}{2} \right)} \text{ dx}\]
\[ = \sqrt{2} \int \sqrt{\frac{1}{2} - \left( x^2 - \frac{x}{2} + \frac{1}{4^2} - \frac{1}{4^2} \right)} \text{ dx}\]
\[ = \sqrt{2} \int \sqrt{\frac{1}{2} + \frac{1}{16} - \left( x - \frac{1}{4} \right)^2} \text{ dx}\]
\[ = \sqrt{2} \int \sqrt{\left( \frac{3}{4} \right)^2 - \left( x - \frac{1}{4} \right)^2} \text{ dx}\]
\[ = \sqrt{2} \left[ \left( \frac{x - \frac{1}{4}}{2} \right) \sqrt{\left( \frac{3}{4} \right)^2 - \left( x - \frac{1}{4} \right)^2} + \frac{9}{32} \sin^{- 1} \left( \frac{x - \frac{1}{4}}{\frac{3}{4}} \right) \right] + C \left[ \because \int\sqrt{a^2 - x^2}\text{ dx} = \frac{1}{2}x\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \sin^{- 1} \frac{x}{a} + C \right]\]
\[ = \left( \frac{4x - 1}{8} \right) \sqrt{1 + x - 2 x^2} + \frac{9\sqrt{2}}{32} \sin^{- 1} \left( \frac{4x - 1}{3} \right) + C\]
APPEARS IN
RELATED QUESTIONS
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Integrate the following w.r.t. x : x3 + x2 – x + 1
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
`int (log x)/(log ex)^2` dx = _________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int (cos x)/(1 - sin x) "dx" =` ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
`int secx/(secx - tanx)dx` equals ______.
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int 1/(x(x-1))dx`