Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Solution
Let I = `int (1)/(sinx.cosx + 2cos^2x).dx`
Dividing numerator and denominator of cos2x, we get
I = `int ((1/cos^2x))/(sinx/cosx + 2).dx`
= `int sec^2x/(tan x + 2).dx`
Put tan x = t
∴ sec2x dx = dt
∴ I = `int (1)/(t + 2)dt`
= log |t + 2| + c
= log|tan x + 2| + c.
APPEARS IN
RELATED QUESTIONS
Find `intsqrtx/sqrt(a^3-x^3)dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of
Write a value of
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int \log_e x\ dx\].
Write a value of
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : tan5x
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int "e"^sqrt"x"` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int cos sqrtx` dx = _____________
`int (sin4x)/(cos 2x) "d"x`
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int cot^2x "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int ("d"x)/(x(x^4 + 1))` = ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
`int cos^3x dx` = ______.
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate:
`int sqrt((a - x)/x) dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate `int1/(x(x-1))dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).