हिंदी

Integrate the following functions w.r.t. x : 1sinx.cosx+2cos2x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`

योग

उत्तर

Let I = `int (1)/(sinx.cosx + 2cos^2x).dx`

Dividing numerator and denominator of cos2x, we get

I = `int ((1/cos^2x))/(sinx/cosx + 2).dx`

= `int sec^2x/(tan x + 2).dx`

Put tan x = t
∴ sec2x dx = dt

∴ I = `int (1)/(t + 2)dt`

= log |t + 2| + c
= log|tan x + 2| + c.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (A) [पृष्ठ ११०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (A) | Q 2.04 | पृष्ठ ११०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate :`intxlogxdx`


Find `intsqrtx/sqrt(a^3-x^3)dx`


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

sec2(7 – 4x)


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

`sin x/(1+ cos x)`


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


\[\int\sqrt{x - x^2} dx\]

\[\int\sqrt{9 - x^2}\text{ dx}\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


The value of \[\int\frac{1}{x + x \log x} dx\] is


Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int cos sqrtx` dx = _____________


`int x/(x + 2)  "d"x`


`int(log(logx))/x  "d"x`


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


`int sin^-1 x`dx = ?


`int1/(4 + 3cos^2x)dx` = ______ 


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


`int sec^6 x tan x   "d"x` = ______.


`int (f^'(x))/(f(x))dx` = ______ + c.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluate `int(1+ x + x^2/(2!)) dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate `int1/(x(x - 1))dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


`int x^3 e^(x^2) dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate `int (1+x+x^2/(2!)) dx`


Evaluate the following

`int x^3/sqrt(1+x^4) dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×