Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
उत्तर
Let I = `int (1)/(sinx.cosx + 2cos^2x).dx`
Dividing numerator and denominator of cos2x, we get
I = `int ((1/cos^2x))/(sinx/cosx + 2).dx`
= `int sec^2x/(tan x + 2).dx`
Put tan x = t
∴ sec2x dx = dt
∴ I = `int (1)/(t + 2)dt`
= log |t + 2| + c
= log|tan x + 2| + c.
APPEARS IN
संबंधित प्रश्न
Evaluate :`intxlogxdx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`sin x/(1+ cos x)`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int cos sqrtx` dx = _____________
`int x/(x + 2) "d"x`
`int(log(logx))/x "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
`int sin^-1 x`dx = ?
`int1/(4 + 3cos^2x)dx` = ______
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int sec^6 x tan x "d"x` = ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate `int(1+ x + x^2/(2!)) dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate `int1/(x(x - 1))dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
`int x^3 e^(x^2) dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).