Advertisements
Advertisements
प्रश्न
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
उत्तर
Let I= \[\int\] cos4 x .sin x dx
⇒ –sin x dx = dt
⇒ sin x dx = –dt
\[= \frac{- t^5}{5} + C\]
\[ = - \frac{\cos^5 x}{5} + C \left( \because t = \cos x \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`sin x/(1+ cos x)`
Evaluate: `int 1/(x(x-1)) dx`
Write a value of
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
The value of \[\int\frac{1}{x + x \log x} dx\] is
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate the following.
`int 1/("x" log "x")`dx
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int logx/x "d"x`
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).