Advertisements
Advertisements
प्रश्न
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
विकल्प
2 cos \[\sqrt{x}\]
\[\sqrt{\frac{\cos x}{x}} + C\]
sin \[\sqrt{x} + C\]
2 sin \[\sqrt{x} + C\]
उत्तर
2 sin \[\sqrt{x} + C\]
\[\text{Let }I = \int\frac{\cos \sqrt{x}}{\sqrt{x}}dx\]
\[\text{Putting }\sqrt{x} = t\]
\[ \Rightarrow \frac{1}{2\sqrt{x}}dx = dt\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2dt\]
\[ \therefore I = 2\int\cos t \cdot dt\]
\[ = 2 \sin t + C\]
\[ = 2 \sin \sqrt{x} + C ..................\left(\because t = \sqrt{x} \right)\]
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`1/(1 + cot x)`
Write a value of
Write a value of
Write a value of
Write a value of\[\int \log_e x\ dx\].
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
`int (logx)^2/x dx` = ______.
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int 1/(x(x-1)) dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`