हिंदी

Evaluate the following : ∫sinxsin3x.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int sinx/(sin 3x).dx`

योग

उत्तर

Let I = `int sinx/(sin 3x).dx`

= `int sinx/(3sinx - 4sin^3x).dx`

= `int (sinx)/(sinx(3 - 4sin^2x)).dx`

= `int (1)/(3 - 4sin^2x).dx`

Dividing both numerator and denominator by cos2x, we get

I = `int (sec^2x)/(3sec^2x - 4tan^2x).dx`

= `int (sec^2x)/(3(1 + tan^2x) - 4tan^2x).dx`

= `int (sec^2x)/(3 - tan^2x).dx`

Put tan x = t

∴ sec2x dx = dt

I = `int dt/(3-t^2)`

I = `int dt/((sqrt(3))^2 - t^2)`

= `int1/((sqrt3)^2 - t^2)dt`

= `(1)/(2sqrt(3)) log |(sqrt(3) + t)/(sqrt(3) - t)| + c`

= `(1)/(2sqrt(3)) log |(sqrt(3) + tanx)/(sqrt(3) - tanx)| + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (B) [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (B) | Q 1.2 | पृष्ठ १२३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`xsqrt(1+ 2x^2)`


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


\[\int\sqrt{x - x^2} dx\]

\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Evaluate the following integrals : tan2x dx


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x : tan5x


Integrate the following functions w.r.t. x : cos7x


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


State whether the following statement is True or False.

If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`


Evaluate: `int "e"^sqrt"x"` dx


`int cos sqrtx` dx = _____________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


`int(log(logx))/x  "d"x`


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


`int1/(4 + 3cos^2x)dx` = ______ 


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate `int1/(x(x - 1))dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


`int x^3 e^(x^2) dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×