Advertisements
Advertisements
प्रश्न
Evaluate the following : `int sinx/(sin 3x).dx`
उत्तर
Let I = `int sinx/(sin 3x).dx`
= `int sinx/(3sinx - 4sin^3x).dx`
= `int (sinx)/(sinx(3 - 4sin^2x)).dx`
= `int (1)/(3 - 4sin^2x).dx`
Dividing both numerator and denominator by cos2x, we get
I = `int (sec^2x)/(3sec^2x - 4tan^2x).dx`
= `int (sec^2x)/(3(1 + tan^2x) - 4tan^2x).dx`
= `int (sec^2x)/(3 - tan^2x).dx`
Put tan x = t
∴ sec2x dx = dt
I = `int dt/(3-t^2)`
I = `int dt/((sqrt(3))^2 - t^2)`
= `int1/((sqrt3)^2 - t^2)dt`
= `(1)/(2sqrt(3)) log |(sqrt(3) + t)/(sqrt(3) - t)| + c`
= `(1)/(2sqrt(3)) log |(sqrt(3) + tanx)/(sqrt(3) - tanx)| + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Write a value of
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals : tan2x dx
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : tan5x
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate: `int "e"^sqrt"x"` dx
`int cos sqrtx` dx = _____________
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int(log(logx))/x "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
`int1/(4 + 3cos^2x)dx` = ______
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate `int1/(x(x - 1))dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
`int x^3 e^(x^2) dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`