Advertisements
Advertisements
प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
उत्तर
`Let I= int(x-3)sqrt(x^2+3x-18x)dx`
`Put sqrt(x^2+3x−18)=t ⇒(x^2+3x−18) =t^2`
On differentiating with respect to x, we get:
`2x+3=2t(dt/dx)`
`x+3/2=t(dt/dx)`
`x+3/2+3−3=t(dt/dx)`
`x−3+9/2=t(dt/dx)..............(1)`
The given integral can be rewritten as follows:
`I=int(x−3+9/2-9/2)sqrt(x^2+3x-18)dx`
`=int(x-3+9/2)sqrt(x^2+3x+18)dx-9/2intsqrt(x^2+3x+18)dx..............(2)`
Suppose that `l_1=int(x-3+9/2)sqrt(x^2_3x-18)dx`
`"On using equation "(1), we getl_1=intt^2dt=t^3/3+C_1=(x^2+3x-18)^(3/2)/3+C_1`
Suppose that `l_2=intsqrt(x^2+3x-18)dx`
`intsqrt(x^2+3x-18)dx=intsqrt((x+3/2)^2-(9/2)^2)dx`
`=((2x+3)/4) sqrt(x^2+3x-18)-81/8log|(2x+3)/2+sqrt(x^2+3x-18)|+C_2`
`l=(x^2+3x-18)^(3/2)/3-9/8(2x+3)sqrt(x^2+3x-18)+729/16log|(2x+3)/2+sqrt(x^2+3x-18)|+C`
where C=C_1+C_2 is a constant.
APPEARS IN
संबंधित प्रश्न
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Solve: dy/dx = cos(x + y)
Write a value of
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int(5x + 2)/(3x - 4) dx` = ______
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`