हिंदी

Evaluate : ∫(x−3)√(x2+3x−18x) dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`

उत्तर

`Let I= int(x-3)sqrt(x^2+3x-18x)dx`

`Put sqrt(x^2+3x−18)=t ⇒(x^2+3x−18) =t^2`


On differentiating with respect to x, we get:

`2x+3=2t(dt/dx)`

`x+3/2=t(dt/dx)`

`x+3/2+3−3=t(dt/dx)`

`x−3+9/2=t(dt/dx)..............(1)`

The given integral can be rewritten as follows:

`I=int(x−3+9/2-9/2)sqrt(x^2+3x-18)dx`

`=int(x-3+9/2)sqrt(x^2+3x+18)dx-9/2intsqrt(x^2+3x+18)dx..............(2)`

Suppose that `l_1=int(x-3+9/2)sqrt(x^2_3x-18)dx`

`"On using equation  "(1), we getl_1=intt^2dt=t^3/3+C_1=(x^2+3x-18)^(3/2)/3+C_1`

Suppose that `l_2=intsqrt(x^2+3x-18)dx`

`intsqrt(x^2+3x-18)dx=intsqrt((x+3/2)^2-(9/2)^2)dx`

`=((2x+3)/4) sqrt(x^2+3x-18)-81/8log|(2x+3)/2+sqrt(x^2+3x-18)|+C_2`

`l=(x^2+3x-18)^(3/2)/3-9/8(2x+3)sqrt(x^2+3x-18)+729/16log|(2x+3)/2+sqrt(x^2+3x-18)|+C`

where C=C_1+C_2 is a constant.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) Delhi Set 1

संबंधित प्रश्न

Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Solve: dy/dx = cos(x + y)


\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


`int(5x + 2)/(3x - 4) dx` = ______


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


Evaluate `int(1 + x + x^2/(2!))dx`


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×