Advertisements
Advertisements
प्रश्न
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
उत्तर
Let I = `int _0^(pi/4) "log"(1+"tan""x")"dx"`
= `int _0^(pi/4) "log"(1+ "tan""x")"dx"`
`=int _0^(pi/4) "log"{1+"tan"(pi/4-"x")} "dx"`
`(because int _0^"a" "f" ("x") "dx" int "f"("a" -"x")"dx")`
`=int _0^(pi/4)"log"{1+(("tan"pi/4 - "tan""x"))/(1+"tan"pi/4"tan""x")} "dx"`
`=int _0^(pi/4) "log"{1+(1-"tan""x")/(1+ "tan""x")} "dx"`
`=int _0^(pi/4) "log"{(1 + "tan""x" +1 -"tan""x")/(1 + "tan""x")}"dx"`
`=int _0^(pi/4) "log"(2/(1+"tan""x")) "dx"`
`=int _0^(pi/4) {"log" 2 -"log"(1+ "tan""x")} "dx"`
`=int _0^(pi/4) "log"2"dx" - int _0^(pi/4) "log" (1+"tan""x")"dx"`
`"I" = "log"2["x"]int _0^(pi/4) - "I"`
2I = `"log" 2 [pi/4-0]`
`"I" = pi/8 ."log"2`
` therefore int _0^(pi/4) "log"(1 +"tan""x")"dx" = pi/8"log"2`
APPEARS IN
संबंधित प्रश्न
Find `intsqrtx/sqrt(a^3-x^3)dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of
Write a value of
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
`int logx/(log ex)^2*dx` = ______.
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int x^2/sqrt(1 - x^6)` dx = ________________
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int (cos2x)/(sin^2x) "d"x`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int dx/(1 + e^-x)` = ______
`int1/(4 + 3cos^2x)dx` = ______
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int (cos x)/(1 - sin x) "dx" =` ______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int 1/(sinx.cos^2x)dx` = ______.
`int cos^3x dx` = ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
`int "cosec"^4x dx` = ______.
Evaluate:
`int sin^2(x/2)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`