हिंदी

Show that - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`

योग

उत्तर

Let I = `int _0^(pi/4) "log"(1+"tan""x")"dx"`

= `int _0^(pi/4) "log"(1+ "tan""x")"dx"`

`=int _0^(pi/4) "log"{1+"tan"(pi/4-"x")} "dx"`

`(because int _0^"a" "f" ("x") "dx" int "f"("a" -"x")"dx")`

`=int _0^(pi/4)"log"{1+(("tan"pi/4 - "tan""x"))/(1+"tan"pi/4"tan""x")} "dx"`

`=int _0^(pi/4) "log"{1+(1-"tan""x")/(1+ "tan""x")} "dx"`

`=int _0^(pi/4) "log"{(1 + "tan""x" +1 -"tan""x")/(1 + "tan""x")}"dx"`

`=int _0^(pi/4) "log"(2/(1+"tan""x")) "dx"`

`=int _0^(pi/4) {"log" 2 -"log"(1+ "tan""x")} "dx"`

`=int _0^(pi/4) "log"2"dx" - int _0^(pi/4) "log" (1+"tan""x")"dx"`

`"I" = "log"2["x"]int _0^(pi/4) - "I"`

2I = `"log" 2 [pi/4-0]`

`"I" = pi/8 ."log"2`

` therefore int _0^(pi/4) "log"(1 +"tan""x")"dx" = pi/8"log"2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (February) Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find `intsqrtx/sqrt(a^3-x^3)dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

`cos x /(sqrt(1+sinx))`


Integrate the functions:

`(sin x)/(1+ cos x)^2`


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


\[\int\sqrt{x - x^2} dx\]

\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


Find : ` int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`


Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


`int logx/(log ex)^2*dx` = ______.


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


`int x^2/sqrt(1 - x^6)` dx = ________________


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int (cos2x)/(sin^2x)  "d"x`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int dx/(1 + e^-x)` = ______


`int1/(4 + 3cos^2x)dx` = ______ 


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


`int (cos x)/(1 - sin x) "dx" =` ______.


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


`int 1/(sinx.cos^2x)dx` = ______.


`int cos^3x  dx` = ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


`int "cosec"^4x  dx` = ______.


Evaluate:

`int sin^2(x/2)dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×