Advertisements
Advertisements
प्रश्न
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
विकल्प
`(1)/(2)sqrt(x + 1) + c`
`(2)/(3)(x + 1)^(3/2) + c`
`sqrt(x + 1) + c`
`2(x - 1)^(3/2) + c`
उत्तर
`(2)/(3)(x + 1)^(3/2) + c`
Explanation:
`I = int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx`
I = `int sqrt((1+x)^2+ sqrtx *sqrt(1+ x) )/ (sqrt(x) + sqrt(1+x))*dx`
I = `int( sqrt(1 + x) sqrt(1 + x) + sqrtx )/ (sqrt(x)+sqrt(1 + x))*dx`
I `= int(sqrt(1+x)) dx = 2/3 (x + 1)^(3/2) + c`
I = `(2)/(3)(x + 1)^(3/2) + c`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Write a value of
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
`int "dx"/(9"x"^2 + 1)= ______. `
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Evaluate the following integrals : `int cos^2x.dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
`int logx/(log ex)^2*dx` = ______.
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int sqrt(1 + sin2x) "d"x`
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int ("d"x)/(x(x^4 + 1))` = ______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate:
`int sqrt((a - x)/x) dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int 1/(x(x-1)) dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`