हिंदी

∫ √ 16 X 2 + 25 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{16 x^2 + 25} \text{ dx}\]
योग

उत्तर

\[\int \sqrt{16 x^2 + 25} \text{ dx}\]
\[ = \int \sqrt{16\left( x^2 + \frac{25}{16} \right)}\text{ dx}\]
\[ = 4\int \sqrt{x^2 + \left( \frac{5}{4} \right)^2} \text{ dx}\]
\[ = 4\left[ \frac{x}{2}\sqrt{x^2 + \left( \frac{5}{4} \right)^2} + \frac{\left( \frac{5}{4} \right)^2}{2}\text{ ln }\left| x + \sqrt{x^2 + \left( \frac{5}{4} \right)^2} \right| \right] + C \left[ \because \int\sqrt{x^2 + a^2} \text{ dx} = \frac{1}{2}x\sqrt{x^2 + a^2} + \frac{1}{2} a^2 \text{ ln}\left| x + \sqrt{x^2 + a^2} \right| + C \right]\]
\[ = 2x \sqrt{x^2 + \frac{25}{16}} + \frac{25}{8}\text{ ln }\left| x + \sqrt{x^2 + \frac{25}{16}} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.28 [पृष्ठ १५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.28 | Q 8 | पृष्ठ १५४

संबंधित प्रश्न

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Integrate the functions:

`sqrt(ax + b)`


Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t.x:

cos8xcotx


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


`int 1/(cos x - sin x)` dx = _______________


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int x^x (1 + logx)  "d"x`


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


`int sin^-1 x`dx = ?


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int (cos x)/(1 - sin x) "dx" =` ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×