Advertisements
Advertisements
प्रश्न
उत्तर
\[\int \sqrt{16 x^2 + 25} \text{ dx}\]
\[ = \int \sqrt{16\left( x^2 + \frac{25}{16} \right)}\text{ dx}\]
\[ = 4\int \sqrt{x^2 + \left( \frac{5}{4} \right)^2} \text{ dx}\]
\[ = 4\left[ \frac{x}{2}\sqrt{x^2 + \left( \frac{5}{4} \right)^2} + \frac{\left( \frac{5}{4} \right)^2}{2}\text{ ln }\left| x + \sqrt{x^2 + \left( \frac{5}{4} \right)^2} \right| \right] + C \left[ \because \int\sqrt{x^2 + a^2} \text{ dx} = \frac{1}{2}x\sqrt{x^2 + a^2} + \frac{1}{2} a^2 \text{ ln}\left| x + \sqrt{x^2 + a^2} \right| + C \right]\]
\[ = 2x \sqrt{x^2 + \frac{25}{16}} + \frac{25}{8}\text{ ln }\left| x + \sqrt{x^2 + \frac{25}{16}} \right| + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
`sqrt(ax + b)`
Write a value of
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t.x:
cos8xcotx
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
`int 1/(cos x - sin x)` dx = _______________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int x^x (1 + logx) "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int sin^-1 x`dx = ?
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int (cos x)/(1 - sin x) "dx" =` ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`