Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
उत्तर
`int(5x + 2)/(3x - 4).dx`
= `int(5/3 (3x - 4) + 20/3 + 2)/(3x - 4) dx`
= `int(5/3 (3x - 4) + 26/3)/(3x - 4) dx`
= `int[5/3 + ((26/3))/(3x - 4)] dx`
= `(5)/(3)int 1 dx + (26)/(3) int 1/(3x - 4) dx`
= `(5)/(3)x + (26)/(3).(1)/(3)log|3x - 4| + c`
= `(5)/(3)x + (26)/(9)log|3x - 4| + c`
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t. x : tan5x
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
`int logx/(log ex)^2*dx` = ______.
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int "e"^sqrt"x"` dx
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int cos^7 x "d"x`
`int (7x + 9)^13 "d"x` ______ + c
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int(log(logx) + 1/(logx)^2)dx` = ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Write `int cotx dx`.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate `int 1/("x"("x" - 1)) "dx"`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
`int x^3 e^(x^2) dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int(1+x+x^2/(2!))dx`