हिंदी

Evaluate the following integrals : ∫5x+23x-4.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`

योग

उत्तर

`int(5x + 2)/(3x - 4).dx`

= `int(5/3 (3x - 4) + 20/3 + 2)/(3x - 4) dx`

= `int(5/3 (3x - 4) + 26/3)/(3x - 4) dx`

= `int[5/3 + ((26/3))/(3x - 4)] dx`

= `(5)/(3)int 1  dx + (26)/(3) int 1/(3x - 4) dx`

= `(5)/(3)x + (26)/(3).(1)/(3)log|3x - 4| + c`

= `(5)/(3)x + (26)/(9)log|3x - 4| + c`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.1 [पृष्ठ १०२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.1 | Q 3.03 | पृष्ठ १०२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

sin (ax + b) cos (ax + b)


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : tan5x


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


`int logx/(log ex)^2*dx` = ______.


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate `int 1/("x" ("x" - 1))` dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int "e"^sqrt"x"` dx


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int cos^7 x  "d"x`


`int (7x + 9)^13  "d"x` ______ + c


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


`int(log(logx) + 1/(logx)^2)dx` = ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


Write `int cotx  dx`.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate `int 1/("x"("x" - 1)) "dx"`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


`int x^3 e^(x^2) dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate `int(1+x+x^2/(2!))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×