Advertisements
Advertisements
प्रश्न
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
उत्तर
Let I = `int sqrt((x-1)/(sqrt(x^2 - x))) dx`
`:. x - 1 = A d/dx (x^2- x) + B`
`x - 1 = A(2x -1) + B`
`1 = 2A => A = 1/2`
`-1 = -A+B => -1 = (-1)/2 + B => B = (-1)/2`
`I = int (1/2 (2x - 1)dx)/(sqrt(x^2 - x)) dx - int 1/2 dx/(sqrt(x^2 - x)) dx`
`= int (1/2 (2x-1)dx)/(sqrt(x^2-x)) - 1/2 int (dx)/(sqrt((x - 1/2)^2 - (1/2)^2))`
`= 1/2 xx 2sqrt(x^2 - x) - 1/2 xx log|(x - 1/2) + sqrt((x- 1/2)^2 - (1/2)^2)| +C`
`= sqrt(x^2 - x) -1/2 log |x - 1/2 + sqrt(x^2 - x)| + C`
APPEARS IN
संबंधित प्रश्न
Evaluate :`intxlogxdx`
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
`int logx/(log ex)^2*dx` = ______.
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Evaluate: `int "e"^sqrt"x"` dx
`int sqrt(x^2 + 2x + 5)` dx = ______________
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int(1+x+x^2/(2!))dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).