Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
उत्तर
`int_0^3 f(x) dx = int_0^(pi/2) cos 2x dx + int_(pi/2)^3 dx`
`= (sin 2x/2)_0^(pi/2) + [3x]_(pi/2)^3`
`= [(sin 2 xx pi/2)/2 - (sin 2 xx 0)/2] + [(3 xx 3 - 3 xx pi/2)]`
`= 0 + 9 - (3pi)/2`
`= 9- (3pi)/2`
APPEARS IN
संबंधित प्रश्न
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Write a value of
Write a value of
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
`int (sin4x)/(cos 2x) "d"x`
`int (cos2x)/(sin^2x) "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
`int sin^-1 x`dx = ?
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`