हिंदी

∫cos2xsin2x dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int (cos2x)/(sin^2x)  "d"x`

योग

उत्तर

`int (cos2x)/(sin^2x)  "d"x`

= `int (1 - 2sin^2x)/(sin^2x)  "d"x`     ......[∵ cos 2θ = 1 − 2sin2θ]

= `int(1/(sin^2x) - (2sin^2x)/(sin^2x))  "d"x`

= `int ("cosec"^2x - 2)  "d"x`

= −cot x − 2x + c

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.3: Indefinite Integration - Very Short Answers

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`xsqrt(1+ 2x^2)`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`1/(1 + cot x)`


\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

\[\int\sqrt{9 - x^2}\text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


The value of \[\int\frac{1}{x + x \log x} dx\] is


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


Evaluate the following integrals : tan2x dx


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


Evaluate: `int "e"^sqrt"x"` dx


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int cot^2x  "d"x`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


`int(5x + 2)/(3x - 4) dx` = ______


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int (cos x)/(1 - sin x) "dx" =` ______.


`int (f^'(x))/(f(x))dx` = ______ + c.


`int(log(logx) + 1/(logx)^2)dx` = ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


`int 1/(sinx.cos^2x)dx` = ______.


Write `int cotx  dx`.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


`int "cosec"^4x  dx` = ______.


Evaluate:

`int sin^2(x/2)dx`


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×