Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
उत्तर
`int (sin2x)/(cosx)dx = int(2sinx cosx)/cosx dx`
= `2 int sin x dx`
= – 2 cos x + c.
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Write a value of
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
`int logx/(log ex)^2*dx` = ______.
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
`int 1/(cos x - sin x)` dx = _______________
`int x^2/sqrt(1 - x^6)` dx = ________________
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int logx/x "d"x`
`int cos^7 x "d"x`
`int dx/(1 + e^-x)` = ______
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
The value of `intsinx/(sinx - cosx)dx` equals ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
`int 1/(sinx.cos^2x)dx` = ______.
`int cos^3x dx` = ______.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate the following
`int1/(x^2 +4x-5)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate:
`int sin^2(x/2)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate the following.
`int x^3 e^(x^2) dx`
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int 1/(x(x-1))dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`